問答題（共 100 分）

1. (1) What is the binary representation of 24.75? (5%)
 (2) Convert -35 into an 8-bit two’s complement binary number. (5%)
 (3) The following message was originally transmitted with odd parity in each short bit string.
 In which strings have errors definitely occurred? (5%)
 (a) 01001000
 (b) 10100010
 (c) 11001110
 (d) 11110000

2. (1) What is the difference between deadlock and starvation? (10%)
 (2) What problem arises as the length of the time slices in a time-sharing system are made
 smaller and smaller? (10%)

3. Consider a chained hash table of size M that contains n items. The performance of the table
 decreases as the load factor $\lambda = n / M$ increases. In order to keep the load factor below 1, we
 propose to double the size of the array when $n = M$. However, in order to do so we must
 rehash all of the elements in the table. Explain why rehashing is necessary. (15%)

4. Given the following sorting algorithms: insertion sort, merge sort, heapsort, quicksort,
 counting sort, and bucket sort. Answer the following sub-problems. (10%)
 (1) What is stable?
 (2) For above algorithms, which are stable and which are unstable? If your answers are
 unstable, please explain the reasons.
 (3) Given a simple scheme that makes any sorting algorithm stable.

5. Determine the following sums: (10%)
 (1) $C(n, 0) + C(n, 1) + C(n, 2) + \ldots + C(n, r) + \ldots + C(n, n)$
 (2) $C(n, 1) + 2C(n, 2) + \ldots + rC(n, r) + \ldots + nC(n, n)$
 (3) $C(n, 1)2^1 + 2C(n, 2)2^2 + 3C(n, 3)2^3 + \ldots + rC(n, r)2^r + \ldots + nC(n, n)2^n$
6. Determine the shortest path between \(a \) and \(z \) in the following graph. Please redraw the graph in the answer paper and emphasize the shortest path with heavy edges. Also, please write down the length of the shortest path. (10%)

![Graph Image]

7. Consider the following page reference string:

\[1,2,3,4,2,1,3,2,6,2,1,3,2,6,3,2,1,2,3,5.\]

Assume there are three frames. How many page faults would occur for the following replacement algorithms? (10%)

(1) LRU replacement

(2) Optimal replacement

8. Suppose that the 5 stages of the pipeline are IF, ID, EX, MEM, and WB. For the following code sequence, identify whether there exists data hazards. Use multiple-clock-cycle pipeline diagram to show your answers to the following questions. (10%)

```
lw $t2, 200($t1)
add $t3, $ t1, $t2
and $t2, $ t3, $t4
lw $t3, 200($t2)
sw $t4, 200($t3)
```