國立屏東大學 104 學年度學士班轉學考試

普通化學 試題

(應用化學系)

*注意事項:

- (2) 不必抄題,但請依序將題號標出,並寫在答案紙上,否則不予計分。

一、選擇題(每題4分,共100分)

- 1. Combining aqueous solutions of BaI₂ and Na₂SO₄ affords a precipitate of BaSO₄. Which ion(s) is/are spectator ions in the reaction?
- (A) Ba^{2+} only (B) Na^{+} only (C) Ba^{2+} and SO_4^{2-}
- (D) Na^+ and I^- (E) SO_4^{2-} and I^-
- 2. The energy of a photon of light is _____ proportional to its frequency and _____ proportional to its wavelength.

 - (A) directly, directly (B) inversely, inversely (C) inversely, directly
- - (D) directly, inversely (E) indirectly, not
- 3. Which of the following is an isoelectronic series?
 - (A) B^{5-} , Si^{4-} , As^{3-} , Te^{2-} (B) F^- , Cl^- , Br^- , I^-
- (C) S, Cl, Ar, K
- (D) Si²⁻, P²⁻, S²⁻, Cl²⁻ (E) O²⁻, P⁻, Ne, Na⁺
- 4. The formal charge on nitrogen in NO₃- is ______.

- (A) -1
- (B) 0
- (C) +1 (D) +2
- (E) -2

- 5. The hybridization of the central atom in the XeF₄ molecule is ______.
 - (A) sp
- (B) sp^2

- (C) sp^3 (D) sp^3d (E) sp^3d^2
- 6. A sample of a gas (1.50 mol) is contained in a 15.0 L cylinder. The temperature is increased from 100 °C to 150 °C. The ratio of final pressure to initial pressure $[\frac{P_2}{P_1}]$ is ______.
 - (A) 1.50
- (B) 0.667
- (C) 0.882
- (D) 1.13
- (E) 1.00
- 7. Which one of the following substances will have hydrogen bonding as one of its intermolecular forces?
 - (A)

(D)

- 8. The phrase "like dissolves like" refers to the fact that _____.
 - (A) gases can only dissolve other gases
 - (B) polar solvents dissolve polar solutes and nonpolar solvents dissolve nonpolar solutes
 - (C) solvents can only dissolve solutes of similar molar mass
 - (D) condensed phases can only dissolve other condensed phases
 - (E) polar solvents dissolve nonpolar solutes and vice versa
- 9. The relationship between the rate constants for the forward and reverse reactions and the equilibrium constant for the process is $K_{eq} =$ _____.
 - (A) $k_f k_r$
- (B) $k_f k_r$ (C) $k_f + k_r$ (D) k_f / k_r (E) k_r / k_f
- 10. Which one of the following pairs cannot be mixed together to form a buffer solution?
 - (A) NH₃, NH₄Cl
- (B) $NaC_2H_3O_2$, $HCl(C_2H_3O_2 acetate)$
- (C) RbOH, HBr
- (D) KOH, HF
- (E) H₃PO₄, KH₂PO₄

11. Which one of t	he following is always pos	itive when a spontan	eous process occurs?
(A) ΔS_{system}	(B) $\Delta S_{surroundings}$	(C) ΔS _{universe}	(D) ΔH _{universe}
(E) $\Delta H_{surround}$	ings		
12. The half-reacti	on occurring at the anode i	n the balanced reacti	on shown below is
3MnO ₄ - (ae	$(q) + 24H^+ (aq) + 5Fe (s) \rightarrow$	$3Mn^{2+}$ (aq) + $5Fe^{3+}$	$(aq) + 12H_2O(1)$
(A) Mn O ₄ - (aq)	$+8H^{+}(aq) + 5e^{-} \rightarrow Mn^{2+}$	(aq) + 4H2O(l)	
(B) 2MnO ₄ - (aq	$(1) + 12H^{+} (aq) + 6e^{-} \rightarrow 2Mr$	n^{2+} (aq) + 3 H ₂ O (l)	
(C) Fe (s) \rightarrow Fe	$^{3+}$ (aq) + 3e ⁻		
(D) Fe (s) \rightarrow Fe	$^{2+}$ (aq) + 2e ⁻		
(E) Fe^{2+} (aq) \rightarrow	$\mathrm{Fe}^{3+}\left(\mathrm{aq}\right)+\mathrm{e}^{-}$		
13. Atoms contain	ing radioactive nuclei are c	alled	
(A) radionuclide	es. (B) radioisotopes.	(C) nucleons.	(D) nuclides.
(E) radioisophor	res.		
14. Which subaton	nic particle has the smalles	t mass?	
(A) a proton	(B) a neutron	(C) an electron	(D) an alpha particle
15. HBr, HCl, HCl	O4, KBr, and NaCl are all	classified as	
(A) acids.	(B) nonelectrolytes.	(C) strong electrolyte	es. (D) weak electrolytes.
16. What is the ground-state electron configuration of Co?			
(A) $[Ar]3d^9$	(B) $[Ar]4s13d8$ (C) $[Ar]4s^23d^7$	(D) [Ar]4s24p64d1
17. Calculate the la	attice energy for MgCl ₂ (s)	using a Born-Haber	cycle and the following
information:	$MgCl_2(s) \rightarrow Mg^{2+}(g) + Mg(s) + Cl_2(g) \rightarrow MgC$ $Mg(s) \rightarrow Mg(g)$ $Mg(g) \rightarrow Mg^{+}(g) + e^{-}$ $Mg^{+}(g) \rightarrow Mg^{2+}(g) + e^{-}$ $1/2 Cl_2(g) \rightarrow Cl(g)$	-641 +147 +737 +1451 +121	? .6 kJ/mol .1 kJ/mol .8 kJ/mol .0 kJ/mol .7 kJ/mol
	$Cl(g) + e^- \rightarrow Cl^-(g)$	-348	i.6 kJ/mol
(A) $+641.6 \text{ kJ/mol}$ (B) $+1240.5 \text{ kJ/mol}$		(C) + 1882.1	kJ/mol (D) $+2523.7 kJ/mol$

- 18. Which molecule contains the most polar bonds?
 - (A) CF₄
- (B) CO₂
- (C) CN⁻
- (D) CH₄
- 19. How many molecules of $\rm N_2$ are in a 500.0 mL container at 780 mm Hg and 135 $^{\circ}\!\rm C$?
 - (A) 8.76×10^{21}
- (B) 9.23×10^{21}
- (C) 2.65×10^{22} (D) 2.79×10^{22}
- 20. Arrange the following in order of increasing boiling point.

CH3CH2OH

CH₃CH₂CH₃

II

H₃C-O-CH₃

CH3CH2NH2

I

Ш

IV

- (A) IV < III < II < I
- (B) II < III < IV < I
- (C) I < IV < III < II
- (D) II < III < I < IV
- 21. Write the equilibrium equation for the **reverse** reaction:

$$2 \text{ CH4}(g) + 3 \text{ O2}(g) \rightarrow 2 \text{ CO}(g) + 4 \text{ H2O}(g)$$

(A)
$$K_{p}' = \frac{[P_{CH_4}]^2 [P_{O_2}]^3}{[P_{CO}]^2 [P_{H_2O}]^4}$$
 (B) $K_{p}' = \frac{[P_{CO}]^2 [P_{H_2O}]^4}{[P_{CH_4}]^2 [P_{O_2}]^3}$

(B)
$$K_p' = \frac{[P_{CO}]^2 [P_{H_2O}]^4}{[P_{CH_4}]^2 [P_{O_2}]^3}$$

(C)
$$K_{p}' = \frac{2[P_{CO}] + 4[P_{H_2O}]}{2[P_{CH_4}] + 3[P_{O_2}]}$$
 (D) $K_{p}' = \frac{2[P_{CH_4}] + 3[P_{O_2}]}{2[P_{CO}] + 4[P_{H_2O}]}$

(D)
$$K_p' = \frac{2[P_{CH_4}] + 3[P_{O_2}]}{2[P_{CO}] + 4[P_{H_2O}]}$$

- 22. Which statement about buffers is true?
 - (A) Buffers have a pH = 7.
 - (B) Buffers consist of a strong acid and its conjugate base.
 - (C) A buffer does not change pH on addition of a strong acid or strong base.
 - (D) Buffers resist change in pH upon addition of small amounts of strong acid or strong base.
- 23. Which is the condensed structure of a straight-chain hydrocarbon?

- (A) I
- (B) II
- (C) III
- (D) IV

24. Which of these neutralization reactions has a pH = 7 when equal molar amounts of acid and base are mixed?

(A)
$$CH_3CO_2H(aq) + NaOH(aq) \rightleftharpoons H_2O(l) + NaCH_3CO_2(aq)$$

(B)
$$HCl(aq) + C_5H_5N(aq) \rightleftharpoons C_5H_5NHCl(aq)$$

(C)
$$HCl(aq) + NaOH(aq) \rightleftharpoons H2O(l) + NaCl(aq)$$

(D)
$$HNO_2(aq) + NH_3(aq) \rightleftharpoons NH_4NO_2(aq)$$

25. What is the reduction half-reaction for the following overall cell reaction?

$$Ni^{2+}(aq) + 2 Ag(s) \rightarrow Ni(s) + 2 Ag^{+}(aq)$$

(A)
$$Ag(s) + e^- \rightarrow Ag^+(aq)$$

(B)
$$Ag^+(aq) + e^- \rightarrow Ag(s)$$

(C)
$$Ni^{2+}(aq) + 2 e^{-} \rightarrow Ni(s)$$

(D)
$$Ni^{2+}(aq) + e^{-} \rightarrow Ni(s)$$